

- powertools list powertools and common commands not standard on linux systems
- sj show jobs in the queue for the current user
- starttime show estimated start times for a job
- mailme E-mail yourself a file
- clusterstate show a summary of the current state of the nodes in the cluster

MICHIGAN STATE

Even More Powertools

- getexample provides a copy of examples for various tasks written by iCER staff
- quota list your home directory disk usage

MICHIGAN STATE

How do we go even bigger? • 5000 scans. – 1.5 years on a single processor computer – 13 days on our ad-hoc cluster. – 1.5 days a commodity cluster at MSU

Example						
 Folder full of input files: 						
	1.in	5.in	9.in	13.in	17.in	
	2.in	6.in	10.in	14.in	18.in	
	3.in	7.in	11.in	15.in	19.in	
	4.in	8.in	12.in	16.in		
 Want folder full of output files: 						
	1.out	5.out	9.out	13.out	17.out	
	2.out	6.out	10.out	14.out	18.out	
	3.out	7.out	11.out	15.out	19.out	
	4.out	8.out	12.out	16.out		
Command Syntax:						
/myprogram inputfile > outputfileMICHIGAN STATE UNIVERSITY						ICER


```
#!/bin/bash -login
#PBS -1 walltime=00:05:00, mem=2gb
#PBS -1 nodes=1:ppn=1, feature=gbe
#PBS -t 1-19

cd ${PBS_O_WORKDIR}

mkdir ${PBS_ARRAYID}

cd ${PBS_ARRAYID}

../myprogram ../${PBS_ARRAYID}.in > ${PBS_ARRAYID}.out

gstat -f ${PBS_JOBID}
```



```
List of Commands

#!/bin/bash -login

#PBS -l walltime=00:05:00

#PBS -l nodes=1:ppn=1, feature=gbe

#PBS -t 1-100

cd ${PBS_O_WORKID}

cmd=`tail -n ${PBS_ARRAYID} commands.txt | head -n 1`
echo ${cmd}

${cmd}

${cmd}

UNIVERSITY
```



```
Simple FAS
     #!/bin/bash -login
     #PBS -1 walltime=00:05:00
     #PBS -1 nodes=1:ppn=1,feature=gbe
     #PBS -t 1-100
     cd ${PBS_O_WORKID}
     sleep $(( ${RANDOM} % 100 ))
     for file in *.in; do
      output="./${file%.*}.out"
      if [ ! -f ${output} ]; then
         touch ${output}
         ./myprogram ${file} > ${output}
        qsub -t 0 -N ${PBS_JOBNAME} ${0}
        exit 0
       fi
MICHIC done
```



```
#!/bin/bash -login
#PBS -l walltime=00:01:00
#PBS -l nodes=1:ppn=5, feature=gbe

cd ${PBS_O_WORKDIR}
export OMP_NUM_THREADS=${PBS_NUM_PPN}

./simpleOMP
qstat -f ${PBS_JOBID}
```



```
MPI program (1 of 4)

/* Needed for printf'ing */
#include <stdio.h>
#include <stdlib.h>

/* Get the MPI header file */
#include <mpi.h>

/* Max number of nodes to test */
#define max_nodes 264

/* Largest hostname string hostnames */
#define str_length 50
```

```
MPI program (2 of 4)

int main(int argc, char **argv)
{
    /* Declare variables */
    int proc, rank, size, namelen;
    int ids[max_nodes];
    char hostname[str_length][max_nodes];
    char p_name[str_length];

MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Get_processor_name(p_name,&namelen);

MICHIGAN STATE
UNIVERSITY
```



```
#include "cuda.h"
#include <iostream>

using namespace std;

void printGrid(float an_array[16][16]) {
  for (int i = 0; i < 16; i++) {
    for (int j = 0; j < 16; j++) {
      cout << an_array[i][j];
    }
    cout << endl;
  }
}</pre>
MICHIGAN STATE
UNIVERSITY
```

```
CUDA program (3 of 5)

int main()
{
    float our_array[16][16];

    for (int i = 0; i < 16; i++) {
        for (int j = 0; j < 16; j++) {
            our_array[i][j] = 0;
        }
    }

MICHIGAN STATE
UNIVERSITY
```


